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Majorization for Products of Measurable Operators

Airat Bikchentaev1
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A new equality for a faithful normal semifinite trace on a von Neumann algebra
is proved. We conjecture a strengthening of the result.

Let M be a semifinite von Neumann algebra acting in a Hilbert space
H, let m be a faithful normal semifinite trace on M, let P (M ) be the lattice

of all projections in M. A closed operator x affiliated with M having every-

where dense domain of definition D (x) is called m -measurable (Nelson, 1974)

if for every e . 0 there exists q P P (M ) such that q (H ) , D (x) and m (q ’ )

, e , where q ’ 5 e 2 q, e is the unit in M. The set K (M, m ) of all m -

measurable operators is a *-algebra with respect to the strong sum, the strong
product, and the adjoint operator. For any subset L , K (M, m ) we shall

denote by L + the set of all positive self-adjoint elements from L. The

rearrangement m t(x) of an operator x P K (M, m ) is the function defined by

m t(x) 5 inf{|xq|M: q P P(M ), m (q ’ ) # t}, t . 0

where | ? |M is the C*-norm on M. The set K0(M, m ) 5 {x P K (M, m ):

limt©1 ` m t(x) 5 0} is a *-subalgebra and two-sided ideal in K (M, m ). For

1 # p , 1 ` , let Lp denote the noncommutative Lebesgue spaces associated

with (M, m ) (Yeadon, 1975). We denote by m the extension of m from

(M ù L1)
+ to a unique bounded functional on M ù L1, and then over the

whole L1.

Lemma 1 (Stroh and West, 1993). K (M, m ) 5 K0(M, m ) 1 M, K(M, m )+

5 K0(M, m )+ 1 M + [i.e., every y P K (M, m ) is of the form y1 1 y2 with

y1 P K0(M, m ), y2 P M ].
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Lemma 2 (Brown and Kosaki, 1990). If a, b P K (M, m ) and ab, ba P
L1, then m (ab) 5 m (ba).

Lemma 3. m t(z*z) 5 m t(zz*) for every z P K. In particular,

z*z P L1 Û zz* P L1 Þ m (z*z) 5 m (zz*)

Theorem 1. Let x, y P K (M, m )+ satisfy xy P L1. Then

x 1/2yx1/2, y 1/2xy1/2 P L 1
1 and m (xy) 5 m (x 1/2yx1/2) 5 m ( y1/2xy1/2)

Proof. 1. Let x, y P M +. Without loss of generality we suppose that

|y|M # 1. For every n P N, introduce a continuous function on [0, 1 ` ) as

follows: fn(t) 5 t (t 1 n 2 1) 2 1/2, if 0 # t # 1, fn is linear on [1, 2] with fn(2)

5 1, and fn(t) 5 1 for t . 2. Obviously 0 # fn # 1. Consider the operators

yn [ ( y 1 n 2 1e) 2 1/2 P M + and zn [ fn( y) ? xy ? yn P L1. Actually, we have

zn 5 fn( y) x ? fn P L 1
1 , n P N. As the function sequence ( fn) uniformly

converges to

f (t) 5 H ! t if 0 # t # 1

1 if t . 1

on [0, 1 ` ), it follows that, by (b) in Theorem VII.2 of Reed and Simon

(1972), we obtain |fn( y) 2 y1/2|M ® 0, n ® ` . Thus zn ® y1/2xy1/2(n ® ` )
in the ultraweak topology. As a normal trace is ultraweakly lower semicontinu-

ous (Dixmier, 1969, p. 85), we have

m ( y1/2xy1/2)

# lim inf
n©1 `

m (zn) 5 lim inf
n©1 `

m ( fn( y) ? xy ? yn)

5 lim inf
n©1 `

m (xy ? yn ? fn( y)) # lim inf
n©1 `

|yn ? fn( y)|M ? m ( | xy | )

# m ( | xy | ) , 1 `

[On the third line, we have gone over to the fourth by making use of Lemma

2 with a 5 fn( y), b 5 xy ? yn and of the inequality fn(t)(t 1 n 2 1) 2 1/2 , 1

for all 0 # t # 1]. Thus y1/2xy1/2 P L 1
1 . By Lemma 2 with a 5 y1/2, b 5

xy1/2, one has m (xy) 5 m ( y1/2xy1/2). It remains to apply Lemma 3 with z 5
y1/2x1/2.

2. The special case y P K0(M, m )+ has been examined in Theorem 3.4

of Dodds et al. (1993).

3. Consider the case when y P K (M, m )+, x P M +. Let y 5 y1 1 y2 be

the representation as in Lemma 1. For a 5 limt ® 1 ` m t( y) and the sets A 5
[0, a ] and B 5 ( a , 1 ` ) it holds that y2 5 y ? eA ( y) 1 a ? eB( y) (Stroh and

West, 1993), wherein eT ( y) is the spectral projection of y corresponding to

the Borel set T , R. Thus

x ? y2 5 xy ? eA( y) 1 a x ? eB( y) (1)
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and the first summand in the right-hand side belongs to L1. By the ª commuta-

tiveº inequality a 2eB( y) # y 2, the square of the absolute value of the adjunction

of the second summand can be estimated as | a eB( y)x | 2 5 x ? a 2 eB( y) ? x #
xy ? yx. The operator monotonicity of the function t j ! t (t $ 0) entails

| a eB( y)x | # | yx | . Therefore, the second summand in (1) belongs to L1, too.

Hence xy2 P L1. Now, we have xy1 5 xy 2 xy2 P L1. By applying point 2

of the proof to x, y1 and point 1 to x,y2, we have x1/2y1x
1/2y2x

1/2 P L1. Thus

x1/2yx1/2 P L1
+. It remains to repeat the concluding arguments in the proof

of point 1.
4. The general case: x,y P K (M, m )+. Let x 5 x1 1 x2 be the representation

as in Lemma 1. By the arguments of point 3, we obtain x1y, x2y P L1. By

applying points 2 and 3 of the proof to the couples x1, y and x2, y, respectively,

we have y1/2x1y
1/2, y1/2x2y

1/2 P L1
+. Thus y1/2xy1/2 P L1

+. Now, we apply

Lemma 3 with z 5 y1/2x1/2. QED

In what follows, z n [ z ? . . . ? z is the product of n copies of z P K (M, m ).

Corollary 1. Let p P N and x, y P K (M, m )+ be such that (xy) p P L1.

Then x1/2yx1/2, y1/2xy1/2 P Lp
+, and m ((xy) p ) 5 m ((x1/2yx1/2) p ) 5 m (( y1/2xy1/2) p ).

Proof. We apply Theorem 1 to x, y1 [ y ? (xy)p 2 1 P K (M, m )+. Observe

that x1/2y1x
1/2 5 (x 1/2yx1/2)p. Since ((xy)p)* 5 ( yx)p P L1, it analogously

follows that m (( y1/2xy1/2)p) 5 m (( yx)p). Lemma 2 yields

m ((xy)p) 5 m (xy1) 5 m ( y1x) 5 m (( yx)p)

If xy P Lp , then (xy)p P L1. QED

Corollary 2. Let m (e) , 1 ` and x, y P K (M, m )+ satisfy xy P M. Then

x1/2yx1/2, y1/2xy1/2 P M +.

Proof. Without loss of generality we suppose that m (e) 5 1 5 |xy|M.

Then xy P Lp and |xy|p 5 ( * 1
0 m t(xy)pdt)1/p # 1, 1 # p , ` . For every p P N,

|x1/2yx1/2| p 5 m ((x 1/2yx1/2)p)1/p 5 t ((xy)p)1/p # 1

It is easy to show that limp©1 ` |x1/2yx1/2| p 5 |x1/2yx1/2|M # 1. Similarly,

|y1/2xy1/2|M # 1. QED

For x,y P K (M, m ), the submajorization ( 5 the weak spectral order

of Hardy, Littlewood, and Polya) y a x means that * t
0 m s( y) ds #

* t
0 m s(x) ds, " t . 0.

Conjecture A. If x, y P K (M, m )+, then x1/2yx1/2 a xy.

This conjecture strengthens Theorem 1.

Let us prove that if Conjecture A holds for every continuous semifinite

von Neumann algebra, then it is valid for all semifinite von Neumann algebras.
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Consider the commutative W*-algebra N 5 L ` (0, 1) with the trace n ( f ) 5
* 1

0 f dm, where m is the Lebesgue measure on [0,1], and regard N as acting

in F 5 L2(0, 1). Let L 5 M J N be the tensor product of von Neumann
algebras M and N, and let l 5 m J n be the tensor product of the traces m
and n . It is clear that the algebra L has no atoms. Let x P K (M, m ) and D
be the linear subspace in H J F generated by the vectors of the form j J
h , j P D (x), h P F. For every j 5 ( n

i 5 1 j i J h i we put (x J e)( j ) 5
( n

i 5 1x j iJ h i. The linear operator x J e with the domain of definition D is

preclosed and its closure x J e belongs to K (L, l ) (Stinespring, 1959).
Thus, K (M, m ) J e 5 {x J e: x P K (M, m )} is a *-subalgebra in K (L, l )

and m i (x) 5 l t(x J e) for all x P K (M, m ), t . 0, where l t(x J e) is the

rearrangement calculated with respect to the trace l of the operator x J e.
We have

#
t

0

m s(x
1/2yx1/2) ds

5 #
t

0

l s(x
1/2yx1/2 ^ e) ds 5 #

t

0

l s((x
1/2 ^ e)( y ^ e)(x 1/2 ^ e)) ds

5 #
t

0

l s((x ^ e)1/2( y ^ e)(x ^ e)1/2) ds # #
t

0

l s((x ^ e)( y ^ e) ds

5 #
t

0

l s((xy ^ e) ds 5 #
t

0

m s(xy) ds QED

Let + 5 +(H ) denote the algebra of all bounded linear operators on

H. We denote by Tr the canonical trace on + and let s (z) be the spectrum

of z P +. For x P + let s (x) denote the sequence of the s-numbers of x.
Then K (+, Tr) 5 + and m t(x) 5 ( `

i 5 1sn(x) l | n 2 1, n) (t) K0 (+, Tr) is the
algebra of all compact operators on H. For x P K0(+, Tr) let l (x) denote

the nonincreasing sequence of the eigenvalues of x with regard to their

multiplicity. Then s (x) 5 l ((x* 2 x)1/2). For x, y P + the submajorization

y a x means that ( k
n 5 1sn( y) # ( k

n 5 1sn(x) for all k P N .

Theorem 2. If x, y P ++ and xy P K0 (+, Tr), then x1/2yx1/2 a xy

Proof. For every z, t P + we have s (zt) \ {0} 5 s (tz) \{0}, and if some

l Þ 0 is an eigenvalue of zt, then it is an eigenvalue of tz with the same
multiplicity (Reed and Simon, 1978). It is easy to show that

xy P K0(+, Tr) Û x 1/2xy1/2 P K0(+, Tr) 1

As xy 5 x1/2 (x1/2y), it follows that l n(x
1/2yx1/2) 5 l n(xy) for all n P N. Since

x1/2yx1/2 is self-adjoint and positive, we have l n(x
1/2yx1/2) 5 sn(x

1/2yx1/2).
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Now, by the Corollary from the Weil Majorization Theorem (Gohberg and

Krein, 1965, p. 62) we obtain

o
k

n 5 1
sn(x

1/2yx1/2) 5 o
k

n 5 1
l n(x

1/2yx1/2) 5 o
k

n 5 1
l n(xy) # o

k

n 5 1
sn(xy) QED

Recall that a linear subspace E of K0 (+, Tr) endowed with a norm

| ? |E with respect to which E is a Banach space is called a symmetric space
provided that x P E, y P +, and s (y) # s (x) imply y P E and |y|E # |x|E.

A symmetric space E is called fully symmetric, if from y a x,x P E
and y P + imply that y P E, and |y|E # |x|E.

The following corollary extends a result for the classical von Neumann±

Shatten ideals 6p , 1 # p , 1 ` , in Reed and Simon (1978).

Corollary 3. If E is a fully symmetric space and x,y P ++ and xy P E,

then x1/2yx1/2 P E + and |x 1/2yx1/2|E # |xy|E.

The following assertion generalizes the Golden±Thompson±Ruskai
inequality (Ruskai, 1972):

Corollary 4. Let x, y be self-adjoint operators on H, bounded above,

and x 1 y is essentially self-adjoint. If e xe y P 61, then Tr(e x+y) # Tr(e xe y)
5 Tr(ex/2e yex/2).

Remarks. 1. For every symmetric space E Þ K0 (+, Tr) there exist x,y
P P (+) such that x1/2yx1/2 5 xyx P E +, xy ¸ E. This results from Loebl
(1986): E Þ K0 (+, Tr) Û $ x P E +: x1/2 ¸ E +, and from the known fact

that every contraction x P ++ with dimKer x 5 ` is of the form x 5 rqr
for suitable r, q P P (+).

2. Theorem 2 is best possible in the sense that s (x1/2yx1/2) # s (xy) fails

to be true in general. For example, consider in M2(C)

x 5 1 1 1

1 2 2 , y 5 1 2 2 1

2 1 3 2
Then we have

x 1/2yx1/2 5
1

5 1 7 6

6 23 2 , s1(x
1/2yx1/2) 5 5, s2(x

1/2yx1/2) 5 1

For xy, s1(xy) 5 (15 1 10 ! 2)1/2 . 5 and s2(xy) 5 (15 2 10 ! 2)1/2 , 1.
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