Majorization for Products of Measurable Operators

Airat Bikchentaev¹

Received July 4, 1997

A new equality for a faithful normal semifinite trace on a von Neumann algebra is proved. We conjecture a strengthening of the result.

Let *M* be a semifinite von Neumann algebra acting in a Hilbert space *H*, let u be a faithful normal semifinite trace on *M*, let $P(M)$ be the lattice of all projections in *M.* A closed operator *x* affiliated with *M* having everywhere dense domain of definition $D(x)$ is called μ -measurable (Nelson, 1974) if for every $\varepsilon > 0$ there exists $q \in P(M)$ such that $q(H) \subset D(x)$ and $\mu(q^{\perp})$ $\langle \epsilon \rangle \in \epsilon$, where $q^{\perp} = e - q$, *e* is the unit in *M*. The set $K(M, \mu)$ of all μ measurable operators is a *-algebra with respect to the strong sum, the strong product, and the adjoint operator. For any subset $L \subset K(M, \mu)$ we shall denote by *L* + the set of all positive self-adjoint elements from *L.* The rearrangement $\mu_i(x)$ of an operator $x \in K(M, \mu)$ is the function defined by

$$
\mu_t(x) = \inf\{\|xq\|_M: q \in P(M), \qquad \mu(q^\perp) \le t\}, \qquad t > 0
$$

where $\| \cdot \|_M$ is the *C**-norm on *M*. The set $K_0(M, \mu) = \{x \in K(M, \mu)$: $\lim_{t\to+\infty} \mu_t(x) = 0$ is a *-subalgebra and two-sided ideal in $K(M, \mu)$. For $1 \leq p \leq +\infty$, let L_p denote the noncommutative Lebesgue spaces associated with (M, μ) (Yeadon, 1975). We denote by μ the extension of μ from $(M \cap L_1)^+$ to a unique bounded functional on $M \cap L_1$, and then over the whole *L*1.

Lemma 1 (Stroh and West, 1993). $K(M, \mu) = K_0(M, \mu) + M$, $K(M, \mu)^+$ $= K_0(M, \mu)^+ + M^+$ [i.e., every $y \in K(M, \mu)$ is of the form $y_1 + y_2$ with $y_1 \in K_0(M, \mu), y_2 \in M$.

¹ Department of Mechanics and Mathematics, Kazan State University, 420008, Kazan, Tatarstan, Russia.

Lemma 2 (Brown and Kosaki, 1990). If *a, b* $\in K(M, \mu)$ and *ab, ba* \in *L*₁, then $\mu(ab) = \mu(ba)$.

Lemma 3. $\mu_1(z^*z) = \mu_1(zz^*)$ for every $z \in K$. In particular,

 $z^*z \in L_1 \Leftrightarrow zz^* \in L_1 \Rightarrow \mu(z^*z) = \mu(zz^*)$

Theorem 1. Let *x*, $y \in K(M, \mu)^+$ satisfy $xy \in L_1$. Then

$$
x^{1/2}yx^{1/2}, y^{1/2}xy^{1/2} \in L_1^+
$$
 and $\mu(xy) = \mu(x^{1/2}yx^{1/2}) = \mu(y^{1/2}xy^{1/2})$

Proof. 1. Let *x*, $y \in M^+$. Without loss of generality we suppose that $||y||_M \le 1$. For every $n \in \mathbb{N}$, introduce a continuous function on $[0, +\infty)$ as follows: $f_n(t) = t(t + n^{-1})^{-1/2}$, if $0 \le t \le 1$, f_n is linear on [1, 2] with $f_n(2)$ $= 1$, and $f_n(t) = 1$ for $t > 2$. Obviously $0 \le f_n \le 1$. Consider the operators $y_n \equiv (y + n^{-1}e)^{-1/2} \in M^+$ and $z_n \equiv f_n(y) \cdot xy \cdot y_n \in L_1$. Actually, we have $z_n = f_n(y)$ $x \cdot f_n \in L_1^+$, $n \in \mathbb{N}$. As the function sequence (f_n) uniformly converges to

$$
f(t) = \begin{cases} \sqrt{t} & \text{if } 0 \le t \le 1\\ 1 & \text{if } t > 1 \end{cases}
$$

on $[0, +\infty)$, it follows that, by (b) in Theorem VII.2 of Reed and Simon (1972), we obtain $||f_n(y) - y^{1/2}||_M \to 0$, $n \to \infty$. Thus $z_n \to y^{1/2}xy^{1/2}(n \to \infty)$ in the ultraweak topology. As a normal trace is ultraweakly lower semicontinu ous (Dixmier, 1969, p. 85), we have

$$
\mu(y^{1/2}xy^{1/2})
$$
\n
$$
\leq \liminf_{n \to +\infty} \mu(z_n) = \liminf_{n \to +\infty} \mu(f_n(y) \cdot xy \cdot y_n)
$$
\n
$$
= \liminf_{n \to +\infty} \mu(xy \cdot y_n \cdot f_n(y)) \leq \liminf_{n \to +\infty} \|y_n \cdot f_n(y)\|_M \cdot \mu(\lfloor xy \rfloor)
$$
\n
$$
\leq \mu(\lfloor xy \rfloor) < +\infty
$$

[On the third line, we have gone over to the fourth by making use of Lemma 2 with $a = f_n(y)$, $b = xy \cdot y_n$ and of the inequality $f_n(t)(t + n^{-1})^{-1/2} < 1$ for all $0 \le t \le 1$. Thus $y^{1/2}xy^{1/2} \in L_1^+$. By Lemma 2 with $a = y^{1/2}$, $b =$ $xy^{1/2}$, one has $\mu(xy) = \mu(y^{1/2}xy^{1/2})$. It remains to apply Lemma 3 with $z =$ $y^{1/2}x^{1/2}$.

2. The special case $y \in K_0(M, \mu)^+$ has been examined in Theorem 3.4 of Dodds *et al.* (1993).

3. Consider the case when $y \in K(M, \mu)^+$, $x \in M^+$. Let $y = y_1 + y_2$ be the representation as in Lemma 1. For $\alpha = \lim_{t \to +\infty} \mu_t(y)$ and the sets $A =$ $[0, \alpha]$ and $B = (\alpha, +\infty)$ it holds that $y_2 = y \cdot e_A(y) + \alpha \cdot e_B(y)$ (Stroh and West, 1993), wherein $e_T(y)$ is the spectral projection of *y* corresponding to the Borel set $T \subseteq \mathbb{R}$. Thus

$$
x \cdot y_2 = xy \cdot e_A(y) + \alpha x \cdot e_B(y) \tag{1}
$$

Majorization for Products of Measurable Operators 573

and the first summand in the right-hand side belongs to L_1 . By the "commutative" inequality $\alpha^2 e_B(y) \leq y^2$, the square of the absolute value of the adjunction of the second summand can be estimated as $|\alpha e_B(y)x|^2 = x \cdot \alpha^2 e_B(y) \cdot x \le$ *xy* · *yx.* The operator monotonicity of the function $t \mapsto \sqrt{t}$ ($t \ge 0$) entails $|\alpha e_B(y)x| \le |y_x|$. Therefore, the second summand in (1) belongs to L_1 , too. Hence $xy_2 \in L_1$. Now, we have $xy_1 = xy - xy_2 \in L_1$. By applying point 2 of the proof to *x*, y_1 and point 1 to *x*, y_2 , we have $x^{1/2}y_1x^{1/2}y_2x^{1/2} \in L_1$. Thus $x^{1/2}$ $yx^{1/2} \in L_1^+$. It remains to repeat the concluding arguments in the proof of point 1.

4. The general case: $x, y \in K(M, \mu)^+$. Let $x = x_1 + x_2$ be the representation as in Lemma 1. By the arguments of point 3, we obtain $x_1y, x_2y \in L_1$. By applying points 2 and 3 of the proof to the couples x_1 , y and x_2 , y , respectively, we have $y^{1/2}x_1y^{1/2}$, $y^{1/2}x_2y^{1/2} \in L_1^+$. Thus $y^{1/2}xy^{1/2} \in L_1^+$. Now, we apply Lemma 3 with $z = y^{1/2} x^{1/2}$. QED

In what follows, $z^n \equiv z \cdot \ldots \cdot z$ is the product of *n* copies of $z \in K(M, \mu)$.

Corollary 1. Let $p \in \mathbb{N}$ and $x, y \in K(M, \mu)^+$ be such that $(xy)^p \in L_1$. Then $x^{1/2}yx^{1/2}$, $y^{1/2}xy^{1/2} \in L_p^+$, and $\mu((xy)^p) = \mu((x^{1/2}yx^{1/2})^p) = \mu((y^{1/2}xy^{1/2})^p)$.

Proof. We apply Theorem 1 to *x*, $y_1 \equiv y \cdot (xy)^{p-1} \in K(M, \mu)^+$. Observe that $x^{1/2}y_1x^{1/2} = (x^{1/2}yx^{1/2})^p$. Since $((xy)^p)^* = (yx)^p \in L_1$, it analogously follows that $\mu((y^{1/2}xy^{1/2})^p) = \mu((yx)^p)$. Lemma 2 yields

$$
\mu((xy)^p) = \mu(xy_1) = \mu(y_1x) = \mu((yx)^p)
$$

If $xy \in L_p$, then $(xy)^p \in L_1$. QED

Corollary 2. Let $\mu(e) < +\infty$ and $x, y \in K(M, \mu)^+$ satisfy $xy \in M$. Then $x^{1/2}yx^{1/2}, y^{1/2}xy^{1/2} \in M^+$.

Proof. Without loss of generality we suppose that $\mu(e) = 1 = ||x \circ ||_M$. Then $xy \in L_p$ and $||xy||_p = (f_0^1 \mu_t(xy)^p dt)^{1/p} \le 1$, $1 \le p < \infty$. For every $p \in \mathbb{N}$,

$$
||x^{1/2}yx^{1/2}||_p = \mu((x^{1/2}yx^{1/2})^p)^{1/p} = \tau((xy)^p)^{1/p} \le 1
$$

It is easy to show that $\lim_{p \to +\infty} ||x^{1/2} y x^{1/2}||_p = ||x^{1/2} y x^{1/2}||_M \le 1$. Similarly, $||y^{1/2}xy^{1/2}||_M \le 1.$ QED

For $x, y \in K(M, \mu)$, the *submajorization* (= the weak spectral order of Hardy, Littlewood, and Polya) $y \prec x$ means that $f_0^t \mu_s(y) ds \le$ $f_0^t \mu_s(x) ds, \forall t > 0.$

Conjecture A. If $x, y \in K(M, \mu)^+$, then $x^{1/2}yx^{1/2} \prec xy$.

This conjecture strengthens Theorem 1.

Let us prove that if Conjecture A holds for every continuous semifinite von Neumann algebra, then it is valid for all semifinite von Neumann algebras. Consider the commutative *W**-algebra $N = L_{\infty}(0, 1)$ with the trace $v(f) =$ $f_0^l f$ *dm*, where *m* is the Lebesgue measure on [0,1], and regard *N* as acting in $F = L_2(0, 1)$. Let $L = M \overline{\otimes} N$ be the tensor product of von Neumann algebras *M* and *N*, and let $\lambda = \mu \otimes v$ be the tensor product of the traces μ and v. It is clear that the algebra *L* has no atoms. Let $x \in K(M, \mu)$ and *D* be the linear subspace in $H \overline{\otimes} F$ generated by the vectors of the form $\xi \otimes$ $\eta, \xi \in D(x), \eta \in F$. For every $\xi = \sum_{i=1}^n \xi_i \otimes \eta_i$ we put $(x \otimes e)(\xi) =$ $\sum_{i=1}^{n} x \xi_i \otimes \eta_i$. The linear operator $x \otimes e$ with the domain of definition *D* is preclosed and its closure $x \otimes e$ belongs to $K (L, \lambda)$ (Stinespring, 1959). Thus, $K(M, \mu)$ \otimes $e = \{x \overline{\otimes} e: x \in K(M, \mu)\}$ is a *-subalgebra in $K(L, \lambda)$ and $\mu_i(x) = \lambda_i(x \otimes e)$ for all $x \in K(M, \mu)$, $t > 0$, where $\lambda_i(x \otimes e)$ is the rearrangement calculated with respect to the trace λ of the operator $\chi \overline{\otimes} e$. We have

$$
\int_0^t \mu_s(x^{1/2}yx^{1/2}) ds
$$

=
$$
\int_0^t \lambda_s(x^{1/2}yx^{1/2} \overline{\otimes} e) ds = \int_0^t \lambda_s((x^{1/2} \overline{\otimes} e)(y \overline{\otimes} e)(x^{1/2} \overline{\otimes} e)) ds
$$

=
$$
\int_0^t \lambda_s((x \overline{\otimes} e)^{1/2}(y \overline{\otimes} e)(x \overline{\otimes} e)^{1/2}) ds \le \int_0^t \lambda_s((x \overline{\otimes} e)(y \overline{\otimes} e)) ds
$$

=
$$
\int_0^t \lambda_s((xy \overline{\otimes} e)) ds = \int_0^t \mu_s(xy) ds
$$
 QED

Let $\mathcal{L} = \mathcal{L}(H)$ denote the algebra of all bounded linear operators on *H.* We denote by Tr the canonical trace on \mathcal{L} and let $\sigma(z)$ be the spectrum of $z \in \mathcal{L}$. For $x \in \mathcal{L}$ let $s(x)$ denote the sequence of the s-numbers of x. Then $K(\mathcal{L}, \text{Tr}) = \mathcal{L}$ and $\mu_t(x) = \sum_{i=1}^{\infty} s_n(x) \lambda \ln(1, n)$ (*t*) $K_0(\mathcal{L}, \text{Tr})$ is the algebra of all compact operators on *H*. For $x \in K_0(\mathcal{L}, T_r)$ let $\lambda(x)$ denote the nonincreasing sequence of the eigenvalues of x with regard to their multiplicity. Then $s(x) = \lambda((x^* - x)^{1/2})$. For $x, y \in \mathcal{L}$ the submajorization $y \prec x$ means that $\Sigma_{n=1}^k s_n(y) \leq \Sigma_{n=1}^k s_n(x)$ for all $k \in \mathbb{N}$.

Theorem 2. If
$$
x, y \in \mathcal{L}^+
$$
 and $xy \in K_0(\mathcal{L}, \text{Tr})$, then $x^{1/2}yx^{1/2} \prec xy$

Proof. For every *z*, $t \in \mathcal{L}$ we have $\sigma(zt) \setminus \{0\} = \sigma(tz) \setminus \{0\}$, and if some $\lambda \neq 0$ is an eigenvalue of *zt*, then it is an eigenvalue of *tz* with the same multiplicity (Reed and Simon, 1978). It is easy to show that

$$
xy \in K_0(\mathcal{L}, \text{Tr}) \Leftrightarrow x^{1/2}xy^{1/2} \in K_0(\mathcal{L}, \text{Tr})^+
$$

As $xy = x^{1/2} (x^{1/2}y)$, it follows that $\lambda_n(x^{1/2}yx^{1/2}) = \lambda_n(xy)$ for all $n \in \mathbb{N}$. Since $x^{1/2}yx^{1/2}$ is self-adjoint and positive, we have $\lambda_n(x^{1/2}yx^{1/2}) = s_n(x^{1/2}yx^{1/2})$.

Now, by the Corollary from the Weil Majorization Theorem (Gohberg and Krein, 1965, p. 62) we obtain

$$
\sum_{n=1}^{k} s_n(x^{1/2}yx^{1/2}) = \sum_{n=1}^{k} \lambda_n(x^{1/2}yx^{1/2}) = \sum_{n=1}^{k} \lambda_n(xy) \le \sum_{n=1}^{k} s_n(xy)
$$
 QED

Recall that a linear subspace E of K_0 (\mathscr{L} , Tr) endowed with a norm $|| \cdot ||_E$ with respect to which *E* is a Banach space is called *a symmetric space* provided that $x \in E$, $y \in \mathcal{L}$, and $s(y) \leq s(x)$ imply $y \in E$ and $||y||_E \leq ||x||_E$.

A symmetric space *E* is called *fully symmetric*, if from $y \prec x, x \in E$ and $y \in \mathcal{L}$ imply that $y \in E$, and $||y||_E \le ||x||_E$.

The following corollary extends a result for the classical von Neumann-Shatten ideals \mathcal{G}_p , $1 \leq p \leq +\infty$, in Reed and Simon (1978).

Corollary 3. If *E* is a fully symmetric space and $x, y \in \mathcal{L}^+$ and $xy \in E$, then $x^{1/2}yx^{1/2} \in E^+$ and $||x^{1/2}yx^{1/2}||_E \le ||xy||_E$.

The following assertion generalizes the Golden-Thompson-Ruskai inequality (Ruskai, 1972):

Corollary 4. Let *x*, *y* be self-adjoint operators on *H*, bounded above, and $x + y$ is essentially self-adjoint. If $e^x e^y \in \mathcal{G}_1$, then $Tr(e^{x+y}) \leq Tr(e^x e^y)$ $= Tr(e^{x/2}e^{y}e^{x/2}).$

Remarks. 1. For every symmetric space $E \neq K_0 \left(\mathcal{L}, T_r \right)$ there exist x, y $P(\mathcal{L})$ such that $x^{1/2}yx^{1/2} = xyx \in E^+$, $xy \notin E$. This results from Loebl (1986): $E \neq K_0 \ (\mathcal{L}, \text{Tr}) \Leftrightarrow \exists x \in E^+ : x^{1/2} \notin E^+$, and from the known fact that every contraction $x \in \mathcal{L}^+$ with dimKer $x = \infty$ is of the form $x = rqr$ for suitable *r,* $q \in P(\mathcal{L})$.

2. Theorem 2 is best possible in the sense that $s(x^{1/2}yx^{1/2}) \leq s(xy)$ fails to be true in general. For example, consider in $M_2(\mathbb{C})$

$$
x = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \qquad y = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}
$$

Then we have

$$
x^{1/2}yx^{1/2} = \frac{1}{5} \begin{pmatrix} 7 & 6 \\ 6 & 23 \end{pmatrix}, \quad s_1(x^{1/2}yx^{1/2}) = 5, \quad s_2(x^{1/2}yx^{1/2}) = 1
$$

For *xy*, $s_1(xy) = (15 + 10\sqrt{2})^{1/2} > 5$ and $s_2(xy) = (15 - 10\sqrt{2})^{1/2} < 1$.

ACKNOWLEDGMENTS

The author wishes to express gratitude to A N. Sherstnev for valuable discussions.

This work was supported by the Russian Foundation of Basic Research, grant no. 95-01-00025.

REFERENCES

- Brown, L. G., and Kosaki H. (1990). *Journal of Operator Theory,* **23**, 3±19.
- Dixmier, J. (1969). Les algèbres d'opérateurs dans l'espace hilbertien (al gèbres de von *Neumann*,) 2nd ed., Gauthier-Villars, Paris.
- Dodds, P. G., Dodds, T. K.-Y., and Pagter, B. (1993). *Transactions of the American Mathematical Society,* **339**, 717±750.
- Gohberg, I. C., and Krein, M. G. (1965). *Introduction to the Theory of Linear Nonselfadjoint Operators*, Nauka, Moscow.
- Loebl, R. (1986). *Proceedings of the American Mathematical Society*, 96, 62–64.
- Nelson, E. (1974). *Journal of Functional Analysis*, 15, 103-116.
- Reed, M., and Simon, B. (1972). *Methods of Modern Mathematical Physics, I: Functional Analysis*, Academic Press, New York.
- Ruskai, M. B. (1972). *Communication of Mathematical Physics*, 26, 280-289.
- Stinespring, W. F. (1959). *Transactions of the American Mathematical Society,* **90**, 15±56.
- Stroh, A., and West, G. P. (1993). *Proceedings of the Royal Irish Academy,* **93A**, 73±86.
- Yeadon, F. J. (1975). *Mathematical Proceedings of the Cambridge Philosophical Society,* **77**, 91-102.