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Majorization for Products of Measurable Operators

Airat Bikchentaev!
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A new equality for a faithful normal semifinite trace on a von Neumann algebra
is proved. We conjecture a strengthening of the result.

Let M be a semifinite von Neumann algebra acting in a Hilbert space
H, let n be a faithful normal semifinite trace on M, let P(M) be the lattice
of all projections in M. A closed operator x affiliated with M having every-
where dense domain of definition D (x) is called u-measurable (Nelson, 1974)
if for every € > 0 there exists ¢ € P (M) such that ¢ (H) C D (x) and },L(ql)
< g, where g- = ¢ — ¢, e is the unit in M. The set K(M, p) of all p-
measurable operators is a *-algebra with respect to the strong sum, the strong
product, and the adjoint operator. For any subset L C K (M, p) we shall
denote by L* the set of all positive self-adjoint elements from L. The
rearrangement [L{x) of an operator x € K(M, p) is the function defined by

n(x) = inf{llxqll: ¢ € P(M), pghH =<, >0

where || - |l is the C*-norm on M. The set Ko(M, p) = {x € K(M, p):
lim;~4+» pHAx) = 0} is a *-subalgebra and two-sided ideal in K(M, p). For
1 =p < +m, let L, denote the noncommutative Lebesgue spaces associated
with (M, pn) (Yeadon, 1975). We denote by p the extension of p from
(M N L))" to a unique bounded functional on M N L;, and then over the
whole L.

Lemma 1 (Stroh and West, 1993). K(M, p) = Ko(M, p) + M, K(M, p)*
= Ko(M, )" + M™ [ie., every y € K(M, p) is of the form y; + y, with
y1 € Ko(M, ), y» € M].
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Lemma 2 (Brown and Kosaki, 1990). If a, b € K(M, n) and ab, ba €
Li, then p(ab) = p(ba).

Lemma 3. p{z*z) = pfzz*) for every z € K In particular,
¥z € L1 & zz* € L) = u(z*z) = p(zz*)

Theorem 1. Let x, y € K(M, n)" satisfy xy € L. Then

12

X yx1/2’y1/2xy1/2 GLT and H(xy) — M(xl/2yx1/2) —

Ly 2xt?)

Proof 1. Let x, y € M". Without loss of generality we suppose that
IVllar =< 1. For every n € N, introduce a continuous function on [0, + ©) as
follows: f;(f) = t(t + n =)™, if 0 < ¢ < 1, f, is linear on [1, 2] with £,(2)
=1, and f,(#) = 1 for ¢t > 2. Obviously 0 = f, = 1. Consider the operators
= +n'e)y ™ eM and z, = f,(y) - xy * yu € Li. Actually, we have
z = f(y) x - f € LT, n € N. As the function sequence (f,) uniformly

converges to
(Vi oif 0=1=1
SO = {1 it r>1

on [0, +), it follows that, by (b) in Theorem VIIL.2 of Reed and Simon
(1972), we obtain ||[fu(y) — ¥"*|lw = 0, n — . Thus z, — y"*xp"*(n — ®)
inthe ultraweak topology. As a normal trace is ultraweakly lower semicontinu-
ous (Dixmier, 1969, p. 85), we have

M(yl/2xyl/2)

= lim inf p(z,) = lim inf pu(f(y) - xp * yn)

n—=+o n—=+0%0
= lim inf pCwy -y - fu(y) = Lim infllyn - fu()llar - p(beyl)
= u(lyl) < +o©

[On the third line, we have gone over to the fourth by making use of Lemma
2 with @ = f,(y), b = xp - y, and of the inequality /() (r + n~H)7"? < 1
for all 0 < ¢ < 1]. Thus y"*xp'? € LY. By Lemma 2 with a = y'?, b =

xy'?, one has p(xy) = p(y"*xp'"?). It remains to apply Lemma 3 with z =

y1/2x1/2

2. The special case y € Ko(M, )" has been examined in Theorem 3.4
of Dodds et al. (1993).

3. Consider the case when y € K(M, p)", x € M". Let y = y; + y, be
the representation as in Lemma 1. For o = lim., + «pL{ ¥) and the sets 4 =
[0, o] and B = (@, +) it holds that y» = y - e4 (y) + O - eg(y) (Stroh and
West, 1993), wherein er(y) is the spectral projection of y corresponding to
the Borel set 7 C R. Thus

X+ y2 =Xy - eay) +ox - ep(y) (1)
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and the first summand in the right-hand side belongs to L;. By the “commuta-
tive” inequality o’es( v) < y?, the square of the absolute value of the adjunction
of the second summand can be estimated as loep(y)xl*> = x_ o ep(y) - x <
xy - yx. The operator monotonicity of the function ¢ — /¢ (1 = 0) entails
lotes( y)xl < lyxl. Therefore, the second summand in (1) belongs to L, too.
Hence xy, € L. Now, we have xy; = xy — x)» € L1 By applying point 2
of the proof to x, y1 and point 1 to x,y2, we have x"?yix'?yx'? € L;. Thus
x"yx'? e L,". 1t remains to repeat the concluding arguments in the proof
of point 1.

4. The general case: x,y € K(M, u)". Let x = x; + x; be the representation
as in Lemma 1. By the arguments of point 3, we obtain xiy, x,y € L;. By
applying points 2 and 3 of the proof to the couples x;, y and x», y, respectively,
we have y"xip"?, y'"2xp"? € L;*. Thus y""xy"? € Li*. Now, we apply
Lemma 3 with z = y"’x"2.  QED

In what follows, z" = z - . . . - zis the product of n copies of z € K(M, p).

Corollary 1. Let p € N and x, y € K(M, p)* be such that (xy)? € L;.
Then 2, p 22 € L* and n(()?) = p(( ') ?) = p((3 ') 7).

Proof. We apply Theorem 1 to x, y; = y - (xy)’ ' € K(M, n)*. Observe
that x"?y x> = (x "yx'?y. Since ((xy)")* = (yx)’ € Li, it analogously
follows that u((y"xy"?”) = u((yx)’). Lemma 2 yields

W(()’) = plxyn) = p(pyix) = p((px)")
If xy € L,, then (xy)” € Li. QED

Corollary 2. Let p(e) < +and x, y € K(M, n)* satisfy xp € M. Then
12 1

x/y ¥ xy1/2 eM”
Proof. Without loss of generality we suppose that p(e) = 1 = |xy|lu-
Then xy € L, and |xyll, = (fopdxpYd)'? < 1,1 < p < . For every p €N,

”x1/2 1/2”p — M((xl/Z 1/2)p)1/p — T((xy)p)llp <1

172 1/2 172 1/2

llar =< 1. Similarly,

It is easy to show that lim, -+« [|x “yx ||, = |x“p

Ily"*xy"llr < 1. QED

For x,y € K(M, ), the submajorization (= the weak spectral order
of Hardy, Littlewood, and Polya) y < x means that fou(y)ds <
Jous(x) ds, V't > 0.

Conjecture A. If x, y € K(M, p)", then x”zyyc”2 < xy.

This conjecture strengthens Theorem 1.
Let us prove that if Conjecture A holds for every continuous semifinite
von Neumann algebra, then it is valid for all semifinite von Neumann algebras.
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Consider the commutative W*-algebra N = L«(0, 1) with the trace v(f) =
[0f dm, where m is the Lebesgue measure on [0,1], and regard N as acting
in F = [0, 1). Let L= M & N be the tensor product of von Neumann
algebras M and N, and let A = p ® V be the tensor product of the traces p
and v. It is clear that the algebra L has no atoms. Let x € K(M, p) and D
be the linear subspace in H X) F generated by the vectors of the form & )
M, & € D(x), N € F For every & = Z/=1& ® 1 we put (x Q) e)(&) =
¥i=1x&QM;. The linear operator x & e with the domain of definition D is
preclosed and its closure x (X) e belongs to K (L, A) (Stinespring, 1959).
Thus, K(M, n) ® e = {x ® e: x € K(M, W)} is a *-subalgebra_in K(L, \)
and p;(x) = Adx ® e) for all x € K(M, ), t > 0, where A(x ® e) is_the
rearrangement calculated with respect to the trace A of the operator x &) e.
We have

t
J Hs(x”zyxllz) ds
0

)

(!

= | A(x"x'? ® e)ds = Jf As((x 7 X e)y X e)(x'” X e)) ds

0 0
r! t

= | A(x X e)'"(y X e)(x X e)'?) ds < J As((x X e)y X e) ds

0 0

_ [ MGy X e) ds = J ws(xy) ds QED
) 0

Jo )

Let £ = $(H) denote the algebra of all bounded linear operators on
H. We denote by Tr the canonical trace on & and let 6(z) be the spectrum
of z € ¥. For x € & let s(x) denote the sequence of the s-numbers of x.
Then K(&£, Tr) = £ and pdx) = ZZisu(x)A In—1, n) (1) Ko (£, Tr) is the
algebra of all compact operators on H. For x € Ko(¥, Tr) let A(x) denote
the nonincreasing sequence of the eigenvalues of x with regard to their
multiplicity. Then s(x) = M(x*—x)"?). For x, y € & the submajorization
y < x means that T 5,(y) < Sk=1s.(x) for all k € N.

Theorem 2. If x, y € £* and xy € Ky (£, Tr), then x"*yx'? <xp

Proof. For every z, t € £ we have o(zt)\ {0} = o(#z)\{0}, and if some
A # 0 is an eigenvalue of zz then it is an eigenvalue of #z with the same
multiplicity (Reed and Simon, 1978). It is easy to show that

xy € Ko(L, Tr) < x""xp'"? e Ko(£, Tr)*

As xy = x" (x'?y), it follows that A, (x"?yx'"*) = A.(xp) for all n € N. Since

x"yx'? is self-adjoint and positive, we have A,(x"?px"?) = s.(x"*x'").
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Now, by the Corollary from the Weil Majorization Theorem (Gohberg and
Krein, 1965, p. 62) we obtain
k

k k k
ZI su(x Pyx!?y = Zl d(x Py = Zl An(xy) < ; sn(xy) QED

n=

Recall that a linear subspace E of Ky (¥, Tr) endowed with a norm
| - ||z with respect to which E is a Banach space is called a symmetric space
provided that x € E, y € &, and s(y) < s(x) imply y € E and |||z = |Ix||z

A symmetric space E is called fully symmetric, if from y <x,x € E
and y € & imply that y € E, and |yllz = ||¥|&

The following corollary extends a result for the classical von Neumann—
Shatten ideals ¥,, 1 =< p < +, in Reed and Simon (1978).

Corollary 3. If E is a fully symmetric space and x,y € £" and xy € E,
then x"?yx!? € E* and |x x|z < |z

The following assertion generalizes the Golden—Thompson—Ruskai
inequality (Ruskai, 1972):

Corollary 4. Let x, y be self-adjoint operators on H, bounded above,
and x + y is essentially self-adjoint. If e*e” € ¥y, then Tr(e*™) < Tr(e'e”)
= Tr(e"'/zey ex/z).

Remarks. 1. For every symmetric space E # Koy (£, Tr) there exist x,p
€ P(¥) such that x"?yx'* = xyx € E*, xp ¢E This results from Loebl
(1986): E # Ky (£, Tr) < 3x € E*: x'* ¢ E*, and from the known fact
that every contraction x € £* with dimKer x = o« is of the form x = rgr
for suitable r, ¢ € P(&).

2. Theorem 2 is best possible in the sense that s (x"?yx!?) < s(xp) fails
to be true in general. For example, consider in M>(C)

_ (1t 1 _[2 —1
o2 Y1 3
Then we have

17 6
2, L 12, 12y — 12, 12y —
x yx 5 (6 23 ), si(x Tyx) =5, so(x Tyx) =1

For xy, s10x0) = (15 + 1042)" > 5 and sa(xy) = (15 — 102)"2 < 1.
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